Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365571

RESUMO

In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.

2.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235981

RESUMO

The current trend of using plastic material in the manufacturing of packaging products raises serious environmental concerns due to waste disposal on land and in oceans and other environmental pollution. Natural polymers such as cellulose, starch, chitosan, and protein extracted from renewable resources are extensively explored as alternatives to plastics due to their biodegradability, biocompatibility, nontoxic properties, and abundant availability. The tensile and water vapor barrier properties and the environmental impacts of natural polymers played key roles in determining the eligibility of these materials for packaging applications. The brittle behavior and hydrophilic nature of natural polymers reduced the tensile and water vapor barrier properties. However, the addition of plasticizer, crosslinker, and reinforcement agents substantially improved the mechanical and water vapor resistance properties. The dispersion abilities and strong interfacial adhesion of nanocellulose with natural polymers improved the tensile strength and water vapor barrier properties of natural polymer-based packaging films. The maximum tensile stress of these composite films was about 38 to 200% more than that of films without reinforcement. The water vapor barrier properties of composite films also reduced up to 60% with nanocellulose reinforcement. The strong hydrogen bonding between natural polymer and nanocellulose reduced the polymer chain movement and decreased the percent elongation at break up to 100%. This review aims to present an overview of the mechanical and water vapor barrier properties of natural polymers and their composites along with the life cycle environmental impacts to elucidate their potential for packaging applications.

3.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312225

RESUMO

Localized carbon reduction strategies are especially critical in states and regions that lack top-down climate leadership. This paper illustrates the use of coupled systems in assessments of subnational climate solutions with a case study of Georgia, a state located in the southeastern United States that does not have statewide climate goals or plans. The paper illustrates how robust place-specific plans for climate action could be derived from foundational global and national work and by embedding that research into the context of socio-ecological-technological systems. Our replicable methodology advances the traditional additive sectoral wedge analysis of carbon abatement potential by incorporating solution interdependencies and by spanning both carbon sources and sinks. We estimate that a system of 20 solutions could cut Georgia's carbon footprint by 35% in 2030 relative to a business-as-usual forecast and by 50% relative to Georgia's emissions in 2005. We also produce a carbon abatement cost curve that aligns private and social costs as well as benefits with units of avoided CO2-e. The solutions are affiliated with various social co-costs and co-benefits that highlight societal concerns extending beyond climate impacts, including public health, environmental quality, employment, and equity.

4.
Environ Manage ; 67(2): 205-227, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33449138

RESUMO

Subnational entities are recognizing the need to systematically examine options for reducing their carbon footprints. However, few robust and comprehensive analyses are available that lay out how US states and regions can most effectively contribute. This paper describes an approach developed for Georgia-a state in the southeastern United States called "Drawdown Georgia", our research involves (1) understanding Georgia's baseline carbon footprint and trends, (2) identifying the universe of Georgia-specific carbon-reduction solutions that could be impactful by 2030, (3) estimating the greenhouse gas reduction potential of these high-impact 2030 solutions for Georgia, and (4) estimating associated costs and benefits while also considering how the solutions might impact societal priorities, such as economic development opportunities, public health, environmental benefits, and equity. We began by examining the global solutions identified by Project Drawdown. The resulting 20 high-impact 2030 solutions provide a strategy for reducing Georgia's carbon footprint in the next decade using market-ready technologies and practices and including negative emission solutions. This paper describes our systematic and replicable process and ends with a discussion of its strengths, weaknesses, and planned future research.


Assuntos
Pegada de Carbono , Gases de Efeito Estufa , Carbono , Clima , Georgia
5.
Food Res Int ; 136: 109327, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846526

RESUMO

Biopolymers have generated mounting interest among researchers and industrialists over the recent past. Rising consciousness on the use of eco-friendly materials as green alternatives for fossil-based biopolymers has shifted the research focus towards biopolymers. Advances in technologies have opened up new windows of opportunities to explore the potential of biopolymers. In this context, this review presents a critique on applications of biopolymers in relation to antioxidant and antimicrobial activities. Some biopolymers are reported to contain inherent antioxidant and antimicrobial properties, whereas, some biopolymers, which do not possess such inherent properties, are used as carriers for other biopolymers or additives having these properties. Modifications are often performed in order to improve the properties of biopolymers to suit them for different applications. This review aims at presenting an overview on recent advances in the use of biopolymers with special reference to their antioxidant and antimicrobial applications in various fields.


Assuntos
Anti-Infecciosos , Antioxidantes , Biopolímeros , Animais , Biodegradação Ambiental , Tecnologia Biomédica , Biopolímeros/química , Biopolímeros/farmacologia , Conservação dos Recursos Naturais , Tecnologia de Alimentos , Plantas , Tecnologia Farmacêutica
6.
Carbohydr Polym ; 181: 506-513, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254001

RESUMO

The thermal stability of cellulose nanofibrils (CNFs) can be improved by converting cellulose crystalline structure to cellulose II using an alkaline treatment method. The conventional method requires around 20wt.% NaOH solutions and causes the cellulose interdigitation and aggregation, making CNFs production difficult. The objective of this study is to develop a new pretreatment method using a low-concentration alkaline solution to produce well-dispersed CNFs with improved thermal stability. CNFs with 90nm diameter were successfully prepared by treating cellulose powder with 2wt.% NaOH solution below 0°C, followed by homogenization through a French pressure cell press. The CNFs had relatively high thermal stability with the mean onset and maximum thermal decomposition temperature of 305°C and 343°C, respectively, compared with the CNFs prepared without the NaOH pretreatment (283°C and 310°C). The increased thermal stability can create new opportunities for the development of CNF-based bio-composites and electronics.

7.
Bioresour Technol ; 232: 372-379, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254732

RESUMO

Torrefaction of energy sorghum and sweet sorghum bagasse was investigated at three different temperatures (250, 275 & 300°C) for 30min to determine product yields and its compositions. The torrefied solid yield ranged from 43% to 65% for sweet sorghum bagasse and 51-70% for energy sorghum. The energy density of both torrefied sorghums increased between 1.6 and 1.4 folds. Besides water, the acetic acid, with a maximum yield of 101.90gL-1 was the dominant compound in the aqueous fraction of liquid products. The aqueous fraction from sweet sorghum bagasse contained furfural and furan carboxyl aldehydes, while ketones and alcohols were dominant from energy sorghum as other key compounds. Phenolic type chemicals and furan derivatives were the major compounds in the oil fraction of the liquid product, accounted up to 58wt%. The condensable liquid products can be further upgraded into high-value platform chemicals.


Assuntos
Biocombustíveis , Biomassa , Biotecnologia/métodos , Sorghum/química , Celulose/química , Madeira/química
8.
J Agric Food Chem ; 64(25): 5260-6, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27258235

RESUMO

Biodegradable composite membranes with antimicrobial properties consisting of nanocellulose fibrils (CNFs), chitosan, and S-nitroso-N-acetyl-d-penicillamine (SNAP) were developed and tested for food packaging applications. As a nitric oxide donor, SNAP was encapsulated into completely dispersed chitosan in 100 mL of 0.1 N acetic acid and was thoroughly mixed with CNFs to produce a composite membrane. The fabricated membranes had a uniform dispersion of chitosan and SNAP within the CNFs, which was confirmed through scanning electron microscopy (SEM) micrographs and a chemiluminescence nitric oxide analyzer. The membranes prepared without SNAP showed lower water vapor permeability than that of the membranes with SNAP. The addition of SNAP resulted in a decrease in Young's modulus for both two- and three-layer membrane configurations. Antimicrobial property evaluation of SNAP-incorporated membranes showed an effective zone of inhibition against bacterial strains of Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes and demonstrated its potential applications for food packaging.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Quitosana/química , Embalagem de Alimentos/instrumentação , Óxido Nítrico/química , Óxido Nítrico/farmacologia , Tecnologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Nanopartículas/química , Staphylococcus aureus/efeitos dos fármacos
9.
Bioresour Technol ; 102(2): 1246-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20801023

RESUMO

Thermal pretreatment or torrefaction of biomass under anoxic condition can produce an energy dense and consistent quality solid biomass fuel for combustion and co-firing applications. This paper investigates the fuel characteristics and grindability of pine chips and logging residues torrefied at temperatures ranging from 225 °C to 300 °C and 30 min residence time. Grinding performance of torrefied biomass evaluated by determining energy required for grinding, particle size distribution and average particle size were compared with raw biomass and coal. Specific energy required for grinding of torrefied biomass decreased significantly with increase in torrefaction temperatures. The grinding energy of torrefied biomass was reduced to as low as 24 kW h/t at 300 °C torrefaction temperature. The gross calorific value of torrefied chips increased with increase in torrefaction temperature. Torrefaction of biomass clearly showed the improved fuel characteristics and grinding properties closer to coal.


Assuntos
Biocombustíveis/análise , Biomassa , Biotecnologia/métodos , Árvores/química , Tamanho da Partícula , Pinus/química , Propriedades de Superfície , Temperatura , Termodinâmica
10.
Bioresour Technol ; 97(12): 1420-6, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16139500

RESUMO

Corn stover is a major crop residue for biomass conversion to produce chemicals and fuels. One of the problems associated with the supply of corn stover to conversion plants is the delivery of feedstock at a low cost. Corn stover has low bulk density and it is difficult to handle. In this study, chopped corn stover samples were compacted in a piston cylinder under three pressure levels (5, 10, 15 MPa) and at three moisture content levels (5%, 10%, 15% (wb)) to produce briquettes. The total energy requirement to compress and extrude briquette ranged from 12 to 30 MJ/t. The briquette density ranged from 650 to 950 kg/m3 increasing with pressure. Moisture content had also a significant effect on briquette density, durability and stability. Low moisture stover (5-10%) resulted in denser, more stable and more durable briquettes than high moisture stover (15%).


Assuntos
Biotecnologia/métodos , Zea mays , Agricultura , Análise de Variância , Biomassa , Celulose/metabolismo , Fermentação , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...